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This paper presents a method for the free transverse vibration analysis of thin,
elastic, isotropic, uniform and non-uniform circular and annular plates. The
circumferential mode numbers (n=0) and (n=1) are dealt with in this paper. The
method is a hybrid of plate theory and finite element analysis. The plate is
subdivided into one circular and many annular finite elements. Two new finite
elements were developed, the first type being a circular plate and the second an
annular plate, the displacement functions of the finite element model are the
classical solution shape functions of plate theory. Mass and stiffness matrices are
determined by precise analytical integration. The free vibrations of uniform
circular and annular plates are studied by this method as well as non-uniform
plates. The results obtained reveal that the frequencies calculated by this method
are in good agreement with those obtained by other authors. This method
combines the advantages of the standard finite element analysis and the
high-accuracy formulation provided by the use of displacement functions derived
from plate theory instead of the usual low-order polynomials. The present method
is remarkable for the fact that it enables us to determine with equal precision both
low and high natural frequencies.
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1. INTRODUCTION

The analysis of circular and annular plates have been of practical and academic
interest for more than a century. The study of vibrations has been reviewed
extensively by Leissa [1–7] and others [8–11]. There are now several theories
available dealing with plates [12, 13]. More specifically, several methods have been
developed for the analysis of the vibrations in thin circular plates. Among these
were Galerkin’s method, the Rayleigh–Ritz method, the transfer matrix method
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Figure 1. Geometry of the mean surface of a circular plate.

and the finite element method. All of these methods have their advantages and
disadvantages. The best test of any method is probably its general content and the
capacity to predict, with precision, both the high and low frequencies of vibration.
The finite element method appears to be ideally suited to the analysis of complex
structures. Numerous general computer programmes are available for industrial
use in the linear and non-linear analysis, where the displacement functions of the
finite elements used are assumed to be polynomial. To be able to predict, with
precision, both the high and the low frequencies, requires the use of a great many
elements in the classical finite element method. In order to achieve this, the present
paper presents a new finite element for the analysis of elastic, thin, isotropic and
radially non-uniform circular and annular plates (Figure 1). The plates may have
any combination of boundary conditions (clamped, free and simply supported).
The finite element method was employed, but it is a hybrid, a combination of the
finite element method and classical plate theory. In this part of the study, we
develop two new finite elements, the first type being a circular plate and the second
an annular plate. This choice allowed us to use the complete equilibrium equations
to determine the displacement functions and, further, the mass and stiffness
matrices. This study is confined to circumferential modes n=0 and n=1. The
analysis in the case of circumferential mode ne 2 has been developed in reference
[28]. This method has been applied with satisfactory results to the linear and
non-linear dynamic analyses of closed cylindrical shells [14–21], open cylindrical
shells [22–25], conical shells [26] and spherical shells [27]. This method proves to
be more accurate than the usual finite element method.

2. METHOD OF ANALYSIS

2.1.     

Sanders’ equation for thin circular plate, in terms of transversal displacement
W for isotropic material is given by [29]
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and the deformation vector is given by
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The corresponding stresses for isotropic material may be related to the strains
by the elasticity matrix [P]:

K nK 0

{s}=[P]{o}= nK K 0 {o}, (3)G
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where K=Et3/12(1− n2); E is the Young’s modulus, t the thickness of the plate
and n the Poisson’s ratio.

The two finite elements developed in this paper are shown in Figures 2(a) and
(b). The first one being an element of the circular plate type [Figure 2(a)] defined
by one circular node j and the second an element of the annular plate type
[Figure 2(b)] defined by two circular nodes i and j. Each node has two degrees of
freedom: the transversal displacement W and the rotation dW/dr.

For motions associated with the nth circumferential mode number, we may
write

W(r, u)=wn (r) cos (nu), (4)

where n is the circumferential mode number, wn is the magnitude of the deflections
and depends on r only.

Figure 2. Displacements and degrees of freedom: (a) finite element of the circular plate type, (b)
finite element of the annular plate type.
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The displacement w1 for the circumferential mode number n=1 and the
displacement w0 for the circumferential mode number n=0 are given by

(1) annular plate element:

w1a = {y, y3, y−1, y ln y}{C1, C2, C3, C4}T = [R1a ]{C}, (5)

w0a = {1, y2, ln y, y2 ln y}{C1, C2, C3, C4}T = [R0a ]{C}; (6)

(2) circular plate element:

w1c = {y, y3}{C1, C2}T = [R1c ]{C}, (7)

w0c = {1, y2}{C1, C2}T = [R0c ]{C}, (8)

where y= r/rj and rj is the outside radius of the plate finite element.
For the case of the annular plate element, the coefficients C1 to C4 are the only

free constants, which must be determined from the four boundary conditions, two
at each node of the finite element. For the circular plate element, the coefficients
C1 and C2 are determined from the two boundary conditions at the node of the
element.

We now express the nodal displacements vectors as follows.

(1) Annular plate element

(n=1):

6di

di7=6w1i , 0dw1

dr 1i
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Figure 3. (a, b) Non-dimensional natural frequency V of a clamped circular plate as a function
of the number of finite elements; (c) a comparison of non-dimensional natural frequency V of a
clamped circular plate as a function of number of nodes (n=1, m=1): · · · · · , present method;
– · – · , NASTRAN [40].
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(2) circular plate element

(n=1):

{di}=6w1i , 0dw1

dr 1i7
T

=$11 1
3/rj%{C}=[A1c ]{C}, (11)

(n=0):

{di}=6w0i , 0dw0

dr 1i7
T

=$10 1
2/rj%{C}=[A0c ]{C}, (12)

where y0 = ri /rj .
Multiplying equations (9)–(12) by their corresponding matrix [A−1] and

substituting into equations (5)–(8), we obtain the displacement functions as
functions of the nodal displacements.

(1) Annular plate element:

W1a =cos u[R1a ][A−1
1a ]6di

dj7=[N1a ]6di

dj7, (13)

W0c =[R0a ][A−1
0a ]6di

dj7=[N0a ]6di

dj7. (14)

(2) Circular plate element:

W1a =cos u[R1c ][A−1
1c ]{di}=[N1c ]{di}, (15)

W0c =[R0c ][A−1
0c ]{di}=[N0c ]{di}. (16)

2.2.  

The strains are related to the displacements through equation (3). Accordingly,
by expressing the strain vector in terms of the nodal displacements, we obtain for

T 1

Non-dimensional natural frequencies of a clamped circular plate; n=0·3, n=0

m Present method Leissa [1] Irie et al. [31] Laura et al. [37]

1 10·216 10·216 10·216 10·327
2 39·771 39·771 39·771 —
3 89·108 89·104 89·104 —
4 158·20 158·183 158·184 —
5 247·08 247·005 — —
6 355·80 355·568 — —
7 484·45 483·872 — —
8 633·22 631·914 — —
9 802·21 799·702 — —

10 992·21 987·216 — —
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T 2

Non-dimensional natural frequencies of a clamped circular
plate; n=0·3, n=1

m Present method Leissa [1] Irie et al. [31]

1 21·261 21·26 21·260
2 60·838 60·82 60·829
3 120·13 120·08 120·079
4 199·23 199·06 199·053
5 298·24 297·77 —
6 417·32 416·20 —
7 556·66 554·37 —
8 716·53 712·30 —
9 897·25 889·95 —

10 1099·2 1087·4 —

the annular and circular plate elements (circumferential modes n=0 and n=1),
the following expressions.

(1) Annular plate element:

(n=1):

{o}1a =cos u&0 −6y/r2
j −2y−3/r2

j

0 −2y/r2
j 2y−3/r2

j

0 4y/r2
j −4y−3/r2

j

−y−1/r2
j

−y−1/r2
j

+2y−1/r2
j'[A−1

1a ]6di

dj7

=cos u[Q1a ][A−1
1a ]6di

dj7=[B1a ]6di

dj7, (17)

(n=0):

{o}0a = &000 −2/r2
j

−2/r2
j

0

y−2/r2
j

−y−2/r2
j

0

−(3+2 ln y)/r2
j
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j

0 '[A−1
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dj7

=[Q0a ][A−1
0a ]6di

dj7=[B0a ]6di

dj7. (18)

(2) Circular plate element:

(n=1):

{o}1c = &0 −6y/r2
j

0 −2y/r2
j

0 4y/r2
j'[A−1

1c ]{di}=cos u[Q1c ][A−1
1c ]{di}=[B1c ]{di}, (19)
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T 3

Non-dimensional natural frequencies of a simply-supported circular plate; n=0·3,
n=0

Leissa and Narita
m Present method [32] Irie et al. [31] Laura et al. [37]

1 4·935 4·935 4·934 4·947
2 29·720 29·720 29·720 —
3 74·158 74·156 74·156 —
4 138·33 138·32 138·318 —
5 222·27 222·22 — —
6 326·02 325·85 — —
7 449·68 449·22 — —
8 593·40 592·33 — —
9 757·41 755·18 — —

10 942·05 937·77 — —

(n=0):

{o}0c = &000 −2/r2
j

−2/r2
j

0 '[A−1
0c ]{di}=[Q0c ][A−1

0c ]{di}=[B0c ]{di}. (20)

2.3.  

Following the framework of the finite element method [30], the mass matrix may
be expressed as

[m]= rt g
2p

0 g
rj

ri

[N]T[N]r dr du, (21)

T 4

Non-dimensional natural frequencies of a simply-
supported circular plate; n=0·3, n=1

Leissa and
m Present method Narita [32] Irie et al. [31]

1 13·898 13·898 13·898
2 48·484 48·479 48·479
3 102·81 102·77 102·733
4 176·93 176·80 176·801
5 270·95 270·57 —
6 384·98 384·07 —
7 519·23 517·31 —
8 673·93 670·29 —
9 849·40 843·01 —

10 1046·0 1035·47 —
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T 5

Non-dimensional natural frequencies of a free circular
plate; n=0·33, n=0

Itao and
m Present method Leissa [1] Crandall [33]

1 — — —
2 9·068 9·084 9·068
3 38·507 38·55 38·507
4 87·816 87·80 87·813
5 156·90 157·0 156·88
6 245·77 245·9 245·70
7 354·48 354·6 354·25
8 483·12 483·1 482·55
9 631·87 631·0 630·59

10 800·97 798·6 798·37

where r is the density of the plate, t its thickness and the matrix [N] is obtained
from equations (13) to (16) respectively for different cases. The matrix [m] was
obtained analytically by carrying out the necessary matrix operations and
integration over r and u in equation (21).

We give here the results of these analytical calculations (all matrices symmetric).

(1) Annular plate element:

(n=1):

[m1a ]= rt[A−1
1a ]T[S1a ][A−1

1a ], (22)

where the elements of matrix [S1a ] are given by

S1a (1, 1)=
pr2

j

4
(1− y4

0 ), S1a (1, 2)=
pr2

j

6
(1− y6

0 ), S1a (1, 3)=
pr2

j

2
(1− y2

0 ),

S1a (1, 4)=
pr2

j

4 0−1
4
− y4

0 ln y0 +
y4

0

41,
S1a (2, 2)=

pr2
j

8
(1− y8

0 ), S1a (2, 3)=
pr2

j

4
(1− y4

0 ),

S1a (2, 4)=
pr2

j

6 0−1
6
− y6

0 ln y0 +
y4

0

61,
S1a (3, 3)=−pr2

j ln y0, S1a (3, 4)=
pr2

j

2 0−1
2
− y2

0 ln y0 +
y4

0

21,
S1a (4, 4)= pr2

j $ 1
32

−
y4

0

4 0ln2 y0 −
1
2

ln y0 +
1
81%; (23)
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(n=0):

[m0a ]= rt[A−1
0a ]T[S0a ][A−1

0a ], (24)

where the elements of matrix [S0a ] are given by

S0a (1, 1)= pr2
j (1− y2

0 ), S0a (1, 2)=
pr2

j

2
(1− y4

0 ),

S0a (1, 3)=2pr2
j $−1

4
−

y2
0

2 0ln y0 −
1
21%,

S0a (1, 4)=2pr2
j $− 1

16
−

y4
0

4 0ln y0 −
1
41%,

S0a (2, 2)=
pr2

j

3
(1− y6

0 ), S0a (2, 3)=2pr2
j $− 1

16
−

y4
0

4 0ln y0 −
1
41%,

S0a (2, 4)=2pr2
j $− 1

36
−

y2
0

6 0ln y0 −
1
61%,

S0a (3, 3)=2pr2
j $y2

0

2 0ln y0 − ln2 y0 −
1
21+

1
4%,

S0a (3, 4)=2pr2
j $y4

0

4 0ln y0

2
− ln2 y0 −

1
81+

1
32%,

T 6

Non-dimensional natural frequencies of a free circular
plate; n=0·3, n=1

Itao and
m Present method Leissa [1] Crandall [33]

1 — — —
2 20·514 20·41 20·513
3 59·868 59·74 59·859
4 119·06 118·88 119·01
5 198·10 196·67 197·92
6 297·08 296·46 296·59
7 416·12 414·86 415·01
8 555·43 553·00 553·17
9 715·27 710·92 711·07

10 895·94 888·58 888·72
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Figure 4. Non-dimensional natural frequency V of a circular plate simply-supported along an
arbitrary circle (n=0, m=1): · · · · · , present method; – · – · , Bodine [34].

S0a (4, 4)=2pr2
j $y6

0

6 0ln y0

3
− ln2 y0 −

1
181+

1
108%. (25)

(2) Circular plate element:

(n=1):

[m1c ]= rt[A−1
1c ]T[S1c ][A−1

1c ], (26)

where the matrix [S1c ] is given by

S1c (1, 1)=
pr2

j

4
, S1c (1, 2)=

pr2
j

6
, S1c (2, 2)=

pr2
j

8
; (27)

(n=0):

[m0c ]= rt[A−1
0c ]T[S0c ][A−1

0c ], (28)

where the matrix [S0c ] is given by

S0c (1, 1)= pr2
j , S0c (1, 2)=

pr2
j

2
, S0c (2, 2)=

pr2
j

3
. (29)

2.4.  

Also, the stiffness matrix may be expressed as [30]

[k]=g
2p

0 g
rj

ri

[B]T[P][B]r dr du, (30)



8

2

4

6

0
1.00.5 1.5

a
b

h0 h1

2.0

Thickness ratio h0/h1

N
o

n
-d

im
en

si
o

n
a

l 
fr

eq
u

en
cy

, 

.   . . 236

where ds= r dr du, [P] is the elasticity matrix given in relation (3) and the matrix
[B] is obtained from equations (17) to (20) respectively for different cases. The
matrix [k] was obtained analytically by carrying out the necessary matrix
operations and integration over r and u in equation (30).

The results of these analytical calculations are as follows (all matrices
symmetric).
(1) Annular plate element:

(n=1):

[k1a ]= [A−1
1a ]T[G1a ][A−1

1a ], (31)

where the matrix [G1a ] is given by

G1a (1, j)=0, for j=1, . . . , 4,

G1a (2, 2)=
4pK(3+ n)

a2 (1− y4
0 ), G1a (2, 3)=0,

G1a (2, 4)=
2pK(3+ n)

a2 (1− y2
0 ),

G1a (3, 3)=−
4pK(1− n)

a2 (1− y−4
0 ), G1a (3, 4)=

2pK(1− n)
a2 (1− y−2

0 ),

G1a (4, 4)=−
4pK
a2 ln y0; (32)

Figure 5. Non-dimensional natural frequency V of simply-supported circular plate with a
discontinuity of thickness (n=0, m=1, b/a=0·5): · · · · · , present method; – · – · , Irie and Yamada
[35].
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Figure 6. Non-dimensional natural frequency V of clamped circular plate with a linear variation
of thickness (n=0, m=1). · · · · · , present method; – · – · , Sato and Shimizu [35].

(n=0):

[k0a ]= [A−1
0a ]T[G0a ][A−1

0a ], (33)

where the matrix [G0c ] is given by

G0a (1, j)=0, for j=1, . . . , 4,

G0a (2, 2)=
8pK(1+ n)

a2 (1− y2
0 ), G0a (2, 3)=0,

G0a (2, 4)=−
4pK(1+ n)

a2 (2y2
0 ln y0 + y2

0 −1),

G0a (3, 3)=−
2pK(1− n)

a2 (1− y−2
0 ), G0a (3, 4)=−

4pK(1− n)
a2 (1− ln y0),

G0a (4, 4)=
4pK(1+ n)

a2 (y2
0 −2y2

0 ln y0 −2y2
0 ln2 y0 −1)+

2pK(5+3n)
a2 (1− y2

0 ).

(34)

(2) Circular plate element:

(n=1):

[k1c ]= [A−1
1c ]T[G1c ][A−1

1c ], (35)
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Figure 7. Non-dimensional natural frequency V of simply-supported circular plate with a linear
variation of thickness (n=0, m=1): · · · · · , present method; — — —, Sato and Shimizu [35].

where the matrix [G1c ] is given by

G1c (1, 1)=G1c (1, 2)=0, G1c (2, 2)=
4pK(3+ n)

a2 ; (36)

(n=0):

[k0c ]= [A−1
0c ]T[G0c ][A−1

0c ], (37)

T 7

Influence of Poisson’s ratio n on the non-dimensional
natural frequencies of a simply-supported circular plate

Present method Leissa and Narita [32]
n m V(0·5)/V(0)* V(0·5)/V(0)*

0 1 1·17308 1·17307
0 2 1·01982 1·01981
0 3 1·00742 1·00743
0 11 1·00520 1·00450
1 1 1·04825 1·04736

* V(0·5), non-dimensional natural frequency calculated for
n=0·5; V(0), non-dimensional natural frequency calculated for
n=0.
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Figure 8. Non-dimensional natural frequency V of circular plate as a function of Poison’s ratio
(n=0, m=1): — — —, clamped; · · · · · , free; – · – · , simply-supported.

where the matrix [G0c ] is given by

G0c (1, 1)=G0c (1, 2)=0, G0c (2, 2)=
8pK(1+ n)

a2 . (38)

3. NUMERICAL RESULTS

The complete circular plate is divided into one circular finite element and a few
annular finite elements. The position of the nodal points (nodal circle) may be
chosen arbitrarily. With the mass and stiffness matrices known of each element,
the global mass and stiffness matrices for the whole structure, [M] and [K]
respectively, may be constructed by superposition in the usual manner. Each of
these square matrices will be of order 2(N+1) for the case of an annular plate
and of order 2N for the case of a circular plate, where N is the total number of
finite elements.

When the plates edges are constrained (such as simply-supported, clamped or
free), the appropriate lines and columns in [M] and [K] are deleted to satisfy these
constraints. Consequently, matrices [M] and [K] reduce to square matrices of order
2(N+1)− J, where J is the number of applied constraints. Thus, for a
clamped-clamped annular plate, the number of constraints is J=4. For a free
circular plate, J=0.

To ease comparison with previously published results, the natural frequencies
calculated in this section are expressed in the non-dimensional form

V=va2zrt/K,
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where v is the natural angular frequency (rad/s), a is the outside radius of the
plate, t its thickness, r is the material density and K is the bending stiffness [see
relation (3)].

3.1.    

A first set of calculations was undertaken to determine the requisite number of
finite elements for a precise determination of natural frequencies. Calculations
were made for the same uniform clamped circular plate with the number of finite
elements N varying from 2 to 20. The results for the circumferential modes n=0
and 1 and the radial modes m=1, 2, 9 and 10 are shown in Figure 3(a). We
conclude that the convergence of the system demands six finite elements for the
modes m=1 and 2. For radial mode m=10, twenty finite elements are sufficient
for satisfactory results.

Figure 3(b) shows the non-dimensional natural frequency (n=1, m=1)
computed by the present method (Hybrid Finite Elements) and compared to
NASTRAN code [40] (Classical Finite Elements). In the NASTRAN solution,

Figure 9. Non-dimensional natural frequency V of a free–free annular plate: ——, present
method; W, Leissa [1].



-  241

T 8

Non-dimensional natural frequencies of annular plates for different boundary
conditions; m=1, b/a=0·5

Boundary
Mode conditions Present method Vera et al. [38] Singh and Chakraverty [39]

n=0 C–C 89·251 89·2500 89·25
S–S 40·043 40·0431 40·01
C–F 17·714 — 17·60
C–S 63·973 63·9732 63·85

n=1 C–C 90·230 90·2302 —
S–S 41·797 41·7973 —
C–S 65·486 65·4855 —

CQUAD4 finite elements were used to model the circular plate. As may be seen,
the hybrid finite element method proves to be more accurate than the classical
finite element method and demands only few finite elements to converge.

Moreover, the reader may consult references [16, 22] for comparison with
available experimental data. In these references, it has been shown, by comparing
the numerical results of our approach with the experimental results, that this
hybrid finite element method embodies simultaneously the advantages of the finite
element method and the precise formulation of classical shell and plate theories.

3.2.      

We present here a comparison of the non-dimensional natural frequencies
determined by this method with those obtained by other authors, both for different
boundary conditions (plate clamped, simply-supported and free) and for different
values of the circumferential modes number n=0 and n=1 and for the radial
modes number m=1 to 10.

T 9

Non-dimensional natural frequencies of clamped–clamped annular plate, n=0

b/a
m 0·1 0·3 0·5 0·7 0·9

1 27·281 45·346 89·251 248·43 1986·5
2 75·367 125·36 246·35 685·06 7055·1
3 148·22 246·17 483·25 1343·3 12 273
4 245·53 407·31 799·15 2220·9 12 907
5 367·31 608·86 1194·2 3318·7 13 427
6 513·64 850·93 1668·8 4638·3 15 778
7 684·63 1133·7 2223·1 6182·6 17 094
8 880·47 1457·6 2857·8 7946·5 20 248
9 1101·4 1823·0 3573·9 9945·5 23 404

10 1347·9 2230·5 4372·6 12 179 24 516
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T 10

Non-dimensional natural frequencies of clamped–clamped annular plate, n=1

b/a
m 0·1 0·3 0·5 0·7 0·9

1 28·916 46·644 90·230 249·16 2258·2
2 78·637 127·38 247·74 686·04 6235·3
3 152·55 248·52 484·81 1344·3 11 828
4 250·65 409·86 800·82 2222·0 15 690
5 373·04 611·54 1196·0 3319·4 16 653
6 519·86 853·71 1670·5 4637·2 18 713
7 691·24 1136·6 2224·9 6176·6 19 414
8 887·42 1460·5 2859·7 7939·0 19 690
9 1108·7 1825·9 3575·9 9926·1 20 402

10 1355·4 2233·5 4374·6 12 140 21 280

As may be seen from Tables 1 to 6, the results obtained by the present method
are in good agreement with those of Irie et al. [31], Leissa [1, 32], Itao and Crandall
[33] and Laura et al. [37].

3.3.       - 

  

The non-dimensional natural frequencies of a circular plate which is
simply-supported along an arbitrary circle have been obtained by the present
method and compared with those obtained by Bodine [34] for the circumferential
mode number n=0 and radial mode number m=1. As may be seen, acceptable
agreement has been obtained (Figure 4).

T 11

Non-dimensional natural frequencies of simply-supported–simply-supported annular
plate, n=0

b/a
m 0·1 0·3 0·5 0·7 0·9

1 14·485 21·079 40·043 110·08 937·95
2 51·782 81·737 158·64 439·21 5276·6
3 112·99 182·54 356·09 987·69 12 247
4 198·47 323·61 632·53 1755·6 12 490
5 308·31 505·02 988·04 2743·5 12 840
6 442·59 726·86 1422·8 3952·3 13 980
7 601·42 989·31 1937·2 5383·5 16 989
8 784·97 1292·6 2531·6 7031·4 19 994
9 993·46 1637·2 3207·0 8912·3 20 459

10 1227·3 2023·6 3964·3 11 019 22 772
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T 12

Non-dimensional natural frequencies of simply-supported–simply-supported annular
plate, n=1

b/a
m 0·1 0·3 0·5 0·7 0·9

1 16·776 23·317 41·797 111·44 995·84
2 56·507 84·636 160·57 440·59 3959·4
3 119·33 185·65 358·06 989·00 8726·3
4 205·84 326·81 634·51 1756·8 15 426
5 316·35 508·27 990·03 2744·2 15 860
6 451·10 730·14 1424·8 3951·9 16 978
7 610·26 992·61 1939·2 5380·6 19 150
8 794·05 1295·9 2533·7 7031·5 19 635
9 1002·7 1640·5 3209·0 8906·3 20 004

10 1236·7 2026·9 3966·3 11 007 20 969

3.4.    -  

Two types of non-uniform circular plate have been studied. The first is a
clamped circular plate with a discontinuity of thickness and the second is a plate
with a linear variation of thickness in the radial direction.

3.4.1. Circular plate with thickness discontinuity

The plate is of uniform thickness h0 as far as radius b and of thickness h1 from
radius b to exterior radius a (Figure 5).

The natural frequencies of this type of circular plate have been established by
Irie and Yamada [35] for the circumferential mode n=0 and radial mode m=1,
with a h0/h1 thickness ratio varying from 0·5 to 2. The results obtained by our
method are in good agreement with those obtained by Irie and Yamada [35]
(Figure 5).

T 13

Non-dimensional natural frequencies of clamped–free annular plate, n=0

b/a
m 0·1 0·3 0·5 0·7 0·9

1 10·159 11·424 17·714 43·143 347·55
2 39·521 51·745 93·847 251·67 1840·8
3 90·447 132·41 252·20 692·09 6310·8
4 164·32 253·14 488·97 1350·1 12 271
5 262·03 414·24 804·85 2227·7 12 900
6 383·96 615·75 1199·9 3325·6 13 040
7 530·32 857·80 1674·4 4645·2 14 114
8 701·31 1140·6 2228·7 6189·6 17 094
9 897·12 1464·4 2863·4 6703·8 19 087

10 1118·1 1829·7 3579·4 7953·5 20 070
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T 14

Non-dimensional natural frequencies of clamped–free annular plate, n=1

b/a
m 0·1 0·3 0·5 0·7 0·9

1 21·195 19·540 22·015 45·333 355·19
2 60·062 59·760 97·376 253·72 2229·1
3 117·09 138·66 255·06 693·79 6282·4
4 192·62 258·51 491·58 1351·6 11 969
5 288·93 419·12 807·33 2229·1 15 690
6 408·52 620·33 1202·3 3326·4 16 670
7 552·68 862·18 1676·7 4644·2 18 351
8 721·87 1144·8 2231·0 6183·5 18 777
9 916·30 1468·5 2865·7 6439·8 19 453

10 1136·2 1833·8 3581·7 7945·7 19 704

Using the present method, it is possible to determine the natural frequencies for
this type of plate for different thickness ratio h0/h1, and particularly for high radial
modes.

3.4.2. Circular plate with a linear thickness variation

The non-dimensional natural frequencies are determined for the circumferential
mode n=0 and radial mode m=1 for different values of a=(he − hc )/hc

(Figures 6 and 7), where hc is the thickness at the centre of the plate and he is the
thickness at the outside edge of the plate.

The calculations have been carried out for two types of boundary conditions:
a clamped plate (Figure 6) and a simply-supported plate (Figure 7). The results
obtained are compared with those obtained by Sato and Shimizu [36] who used
the transfer matrix method. Good agreement has been obtained.

T 15

Non-dimensional natural frequencies of clamped–simply-supported annular plate,
n=0

b/a
m 0·1 0·3 0·5 0·7 0·9

1 22·701 33·765 63·973 174·42 1391·9
2 65·640 104·22 202·07 558·19 5986·6
3 132·90 215·08 419·24 1161·4 12 270
4 224·46 366·22 715·42 1984·2 12 780
5 340·39 557·72 1090·7 3026·6 12 917
6 480·79 789·69 1545·4 4290·4 14 080
7 645·78 1062·3 2079·7 5779·3 17 094
8 835·54 1375·9 2694·3 7488·5 20 055
9 1050·3 1730·9 3390·0 9425·4 22 351

10 1290·5 2127·8 4167·8 11 603 23 603
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T 16

Non-dimensional natural frequencies of clamped–simply-supported annular plate,
n=1

b/a
m 0·1 0·3 0·5 0·7 0·9

1 25·283 35·906 65·486 175·52 1557·6
2 70·690 107·03 203·85 559·37 5040·6
3 139·43 218·11 421·11 1162·7 10 211
4 231·93 369·35 717·33 1985·4 15 689
5 348·50 560·91 1092·7 3027·8 16 432
6 489·33 792·92 1547·3 4290·5 17 937
7 654·64 1065·6 2081·6 5774·4 19 211
8 844·64 1379·2 2696·3 7480·7 19 646
9 1059·6 1734·2 3392·0 9411·4 20 105

10 1300·0 2131·2 4170·0 11 569 21 049

We note that frequencies vary linearly with a for both boundary conditions. The
equations for these straight lines are as follows.

Clamped plate: V=8·6a+10·2, for n=0, m=1.

Simply-supported: V=3a+4·9, for n=0, m=1.

This method can also give the natural frequencies for a circular plate of other
non-uniform thickness and properties, whether the modes are high or low.

3.5.   ’      

 

Analysis of the results of Table 7 shows that the effect of Poisson’s ratio on the
natural frequencies of circular plates is only important for low radial vibration
modes. This effect is evident in Figure 8, which shows the natural frequencies of

T 17

Non-dimensional natural frequencies of free–free annular plate, n=0

b/a
m 0·1 0·3 0·5 0·7 0·9

1 — — — — —
2 8·7745 8·3535 9·3135 13·162 38·014
3 38·236 50·353 92·308 250·57 1233·4
4 89·028 130·48 249·39 687·09 1847·5
5 162·86 251·20 486·23 1345·2 5954·6
6 260·54 412·28 802·09 1390·3 12 267
7 382·45 613·78 1197·1 2222·5 12 937
8 528·80 855·81 1612·2 3320·0 13 001
9 699·76 1138·6 1671·6 4639·0 14 058

10 895·54 1462·3 2225·9 6182·2 17 016
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T 18

Non-dimensional natural frequencies of free–free annular plate, n=1

b/a
m 0·1 0·3 0·5 0·7 0·9

1 — — — — —
2 20·406 18·292 17·198 21·914 55·250
3 59·072 58·784 96·266 253·13 1365·8
4 116·01 137·11 252·61 689·31 2249·1
5 191·46 256·83 489·09 1347·2 6293·7
6 287·71 417·36 804·77 1542·4 12 056
7 407·23 618·52 1199·7 2224·7 15 703
8 551·33 860·33 1674·1 3322·0 16 808
9 720·47 1142·9 1796·7 4639·7 18 744

10 914·84 1466·6 2228·3 6179·1 19 456

a circular plate for the circumferential mode number n=0 and the first radial
mode. We conclude that the effect is more pronounced for a simply-supported
circular plate (17% difference between the frequency calculated with n=0 and
that calculates with n=0·5); for a free plate the error is 16%, while for a clamped
plate Poisson’s ratio has no effect. For a simply-supported annular plate the effect
of the ratio is not very pronounced (3%), while it is negligible for other boundary
conditions.

3.6.     

Figure 9 shows a comparison of results between the present method and those
of Leissa [1] for a free–free annular plate. For other boundary conditions, Table 8
shows comparative results between the present method and those of Vera et al.
[38] and Singh and Chakraverty [39]. As may be seen, very good agreement was
found between the two results. The present method is remarkable for the fact that
it enables us to determine with equal precision both low and high natural
frequencies. The results obtained in the literature for annular plates are only for
relatively low radial modes (m=1, 2, 3). To extend the range of results,
Tables 9–18 show part of the results obtained for n=0, 1 and m=1 to 10 for
different boundary conditions and various dimensions of the annular plate. The
annular plate was modelled with twenty finite elements.

4. CONCLUSIONS

A method based on the classical solution shape functions of plate theory and
the finite element method has been formulated for the transverse vibration analysis
of non-uniform circular and annular plates. The circumferential modes numbers
(n=0) and (n=1) have been studied in this paper. Two new finite elements were
developed, the first type being a circular plate and the second an annular plate.
Mass and stiffness matrices were determined by analytical integration. The
convergence of the proposed method was established and the natural frequencies
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were obtained for different circular and annular plates, both uniform and
non-uniform. These were compared with the results of other investigations and
generally good agreement was obtained.

This method offers many advantages, some of which are the following.

(1) Simple inclusion of thickness discontinuities, material property variations,
differences in materials comprising the plate.

(2) Arbitrary boundary conditions: the problem can be resolved for a
supported, clamped–free or clamped–clamped plate without changing the
displacement functions in each case.

(3) High as well as low frequencies may be obtained with high accuracy as
shown in the present study and in references [16, 20, 22, 26, 28].

(4) As shown in reference [16], this method is more precise than the usual finite
element methods, but suffers from a lack of versatility; for instance, it
cannot be used to analyse other than geometrically axially symmetric,
non-uniform circular and annular plates and cylindrical and conical shells.

(5) This approach has been also applied with satisfactory results to the dynamic
linear and non-linear analysis of cylindrical and conical shells containing a
flowing fluid or partially filled with liquid [14–28].
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APPENDIX: NOMENCLATURE

a=outside radius of an annular or circular plate
b=inside radius of an annular plate
E=Young’s modulus
J=number of boundary conditions
K=bending stiffness=Et3/12(1− n2)
ln=Napierian logarithm
m=radial mode number
n=circumferential mode number
r=radial coordinate
ri =inside radius of annular finite element
rj =outside radius of annular or circular finite element
t=thickness of the plate

W=transversal displacement
wn =amplitude of W associated with the nth circumferential mode number
y=coordinate defined by y= r/rj

y0 = coordinate defined by y0 = ri /rj

u=circumferential coordinate
n=Poisson’s ratio
r=density of the material of the plate
v=natural angular frequency
V=non-dimensional natural frequency=va2(rt/K)1/2

[A]=defined by equations (9)–(12)
[k]= stiffness matrix
[m]=mass matrix
[P]= elasticity matrix, given in equation (3)

{C}=arbitrary constants vector
{o}=deformation vector
{s}=stress vector.
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