NATURAL FREQUENCIES OF TRANSVERSE VIBRATIONS OF NON-UNIFORM CIRCULAR AND ANNULAR PLATES

A. Selmane
Structures, Materials and Propulsion Laboratory, Institute for Aerospace Research, National Research Council of Canada, Montreal Road, U66a, Ottawa, Ontario, Canada K1A 0R6
AND
A. A. Lakis
Department of Mechanical Engineering, École Polytechnique de Montréal, Université de Montréal. C.P. 6079, Succ. Centre-ville, Montréal, Québec, Canada H3C 3 A7

(Received 3 September 1997, and in final form 3 August 1998)

This paper presents a method for the free transverse vibration analysis of thin, elastic, isotropic, uniform and non-uniform circular and annular plates. The circumferential mode numbers $(n=0)$ and $(n=1)$ are dealt with in this paper. The method is a hybrid of plate theory and finite element analysis. The plate is subdivided into one circular and many annular finite elements. Two new finite elements were developed, the first type being a circular plate and the second an annular plate, the displacement functions of the finite element model are the classical solution shape functions of plate theory. Mass and stiffness matrices are determined by precise analytical integration. The free vibrations of uniform circular and annular plates are studied by this method as well as non-uniform plates. The results obtained reveal that the frequencies calculated by this method are in good agreement with those obtained by other authors. This method combines the advantages of the standard finite element analysis and the high-accuracy formulation provided by the use of displacement functions derived from plate theory instead of the usual low-order polynomials. The present method is remarkable for the fact that it enables us to determine with equal precision both low and high natural frequencies.
(C) 1999 Academic Press

1. INTRODUCTION

The analysis of circular and annular plates have been of practical and academic interest for more than a century. The study of vibrations has been reviewed extensively by Leissa [1-7] and others [8-11]. There are now several theories available dealing with plates $[12,13]$. More specifically, several methods have been developed for the analysis of the vibrations in thin circular plates. Among these were Galerkin's method, the Rayleigh-Ritz method, the transfer matrix method

Figure 1. Geometry of the mean surface of a circular plate.
and the finite element method. All of these methods have their advantages and disadvantages. The best test of any method is probably its general content and the capacity to predict, with precision, both the high and low frequencies of vibration. The finite element method appears to be ideally suited to the analysis of complex structures. Numerous general computer programmes are available for industrial use in the linear and non-linear analysis, where the displacement functions of the finite elements used are assumed to be polynomial. To be able to predict, with precision, both the high and the low frequencies, requires the use of a great many elements in the classical finite element method. In order to achieve this, the present paper presents a new finite element for the analysis of elastic, thin, isotropic and radially non-uniform circular and annular plates (Figure 1). The plates may have any combination of boundary conditions (clamped, free and simply supported). The finite element method was employed, but it is a hybrid, a combination of the finite element method and classical plate theory. In this part of the study, we develop two new finite elements, the first type being a circular plate and the second an annular plate. This choice allowed us to use the complete equilibrium equations to determine the displacement functions and, further, the mass and stiffness matrices. This study is confined to circumferential modes $n=0$ and $n=1$. The analysis in the case of circumferential mode $n \geqslant 2$ has been developed in reference [28]. This method has been applied with satisfactory results to the linear and non-linear dynamic analyses of closed cylindrical shells [14-21], open cylindrical shells [22-25], conical shells [26] and spherical shells [27]. This method proves to be more accurate than the usual finite element method.

2. METHOD OF ANALYSIS

2.1. DETERMINATION OF THE DISPLACEMENT FUNCTIONS

Sanders' equation for thin circular plate, in terms of transversal displacement W for isotropic material is given by [29]

$$
\begin{align*}
\frac{\partial^{4} W}{\partial r^{4}} & +2 \frac{\partial^{4} W}{r^{2} \partial r^{2} \partial \theta^{2}}+\frac{\partial^{4} W}{r^{4} \partial \theta^{4}}+\frac{\partial^{3} W}{r \partial r^{3}}-2 \frac{\partial^{3} W}{r^{3} \partial r \partial \theta^{2}}-\frac{\partial^{2} W}{r^{2} \partial r^{2}} \\
& +4 \frac{\partial^{2} W}{r^{4} \partial r \partial \theta}+2 \frac{\partial^{4} W}{r^{3} \partial r}=0 \tag{1}
\end{align*}
$$

and the deformation vector is given by

$$
\{\varepsilon\}=\left\{\begin{array}{c}
-\frac{\partial^{2} W}{\partial r^{2}} \tag{2}\\
-\frac{\partial W}{r \partial r}-\frac{\partial^{2} W}{r^{2} \partial \theta^{2}} \\
-2 \frac{\partial}{\partial r}\left(\frac{\partial W}{r \partial \theta}\right)
\end{array}\right\}
$$

The corresponding stresses for isotropic material may be related to the strains by the elasticity matrix [$P]$:

$$
\{\sigma\}=[P]\{\varepsilon\}=\left[\begin{array}{ccc}
K & v K & 0 \tag{3}\\
v K & K & 0 \\
0 & 0 & \frac{1-v}{2} K
\end{array}\right]\{\varepsilon\}
$$

where $K=E t^{3} / 12\left(1-v^{2}\right) ; E$ is the Young's modulus, t the thickness of the plate and v the Poisson's ratio.

The two finite elements developed in this paper are shown in Figures 2(a) and (b). The first one being an element of the circular plate type [Figure 2(a)] defined by one circular node j and the second an element of the annular plate type [Figure 2(b)] defined by two circular nodes i and j. Each node has two degrees of freedom: the transversal displacement W and the rotation $\mathrm{d} W / \mathrm{d} r$.

For motions associated with the nth circumferential mode number, we may write

$$
\begin{equation*}
W(r, \theta)=w_{n}(r) \cos (n \theta) \tag{4}
\end{equation*}
$$

where n is the circumferential mode number, w_{n} is the magnitude of the deflections and depends on r only.

Figure 2. Displacements and degrees of freedom: (a) finite element of the circular plate type, (b) finite element of the annular plate type.

The displacement w_{1} for the circumferential mode number $n=1$ and the displacement w_{0} for the circumferential mode number $n=0$ are given by
(1) annular plate element:

$$
\begin{align*}
& w_{1 a}=\left\{y, y^{3}, y^{-1}, y \ln y\right\}\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}^{\mathrm{T}}=\left[R_{1 a}\right]\{C\}, \tag{5}\\
& w_{0 a}=\left\{1, y^{2}, \ln y, y^{2} \ln y\right\}\left\{C_{1}, C_{2}, C_{3}, C_{4}\right\}^{\mathrm{T}}=\left[R_{0 a}\right]\{C\} ; \tag{6}
\end{align*}
$$

(2) circular plate element:

$$
\begin{align*}
& w_{1 c}=\left\{y, y^{3}\right\}\left\{C_{1}, C_{2}\right\}^{\mathrm{T}}=\left[R_{1 c}\right]\{C\}, \tag{7}\\
& w_{0 c}=\left\{1, y^{2}\right\}\left\{C_{1}, C_{2}\right\}^{\mathrm{T}}=\left[R_{0 c}\right]\{C\}, \tag{8}
\end{align*}
$$

where $y=r / r_{j}$ and r_{j} is the outside radius of the plate finite element.
For the case of the annular plate element, the coefficients C_{1} to C_{4} are the only free constants, which must be determined from the four boundary conditions, two at each node of the finite element. For the circular plate element, the coefficients C_{1} and C_{2} are determined from the two boundary conditions at the node of the element.

We now express the nodal displacements vectors as follows.
(1) Annular plate element
$(n=1):$

$$
\begin{align*}
\left\{\begin{array}{l}
\delta_{i} \\
\delta_{i}
\end{array}\right\} & =\left\{w_{1 i},\left(\frac{\mathrm{~d} w_{1}}{\mathrm{~d} r}\right)_{i}, w_{1 j},\left(\frac{\mathrm{~d} w_{1}}{\mathrm{~d} r}\right)_{j}\right\}^{\mathrm{T}} \\
& =\left[\begin{array}{cccc}
y_{0} & y_{0}^{3} & y_{0}^{-1} & y_{0} \ln y_{0} \\
1 / r_{j} & 3 y_{0}^{2} / r_{j} & -y_{0}^{-2} / r_{j} & \left(\ln y_{0}+1\right) / r_{j} \\
1 & 1 & 1 & 0 \\
1 / r_{j} & 3 / r_{j} & -1 / r_{j} & 1 / r_{j}
\end{array}\right]\{C\}=\left[A_{1 a}\right]\{C\}, \tag{9}
\end{align*}
$$

$(n=0):$

$$
\begin{align*}
\left\{\begin{array}{l}
\delta_{i} \\
\delta_{i}
\end{array}\right\} & =\left\{w_{0 i},\left(\frac{\mathrm{~d} w_{0}}{\mathrm{~d} r}\right)_{i}, w_{0 j},\left(\frac{\mathrm{~d} w_{0}}{\mathrm{~d} r}\right)_{j}\right\}^{\mathrm{T}} \\
& =\left[\begin{array}{cccc}
1 & y_{0}^{2} & \ln y_{0} & y_{0}^{2} \ln y_{0} \\
0 & 2 y_{0} / r_{j} & y_{0}^{-1} / r_{j} & y_{0}\left(2 \ln y_{0}+1\right) / r_{j} \\
1 & 1 & 0 & 0 \\
0 & 2 / r_{j} & 1 / r_{j} & 1 / r_{j}
\end{array}\right]\{C\}=\left[A_{0 a}\right]\{C\} . \tag{10}
\end{align*}
$$

Figure 3. (a, b) Non-dimensional natural frequency Ω of a clamped circular plate as a function of the number of finite elements; (c) a comparison of non-dimensional natural frequency Ω of a clamped circular plate as a function of number of nodes $(n=1, m=1): \cdots \cdots$, present method; $-\cdot-\cdot$, NASTRAN [40].
(2) circular plate element
($n=1$):

$$
\left\{\delta_{i}\right\}=\left\{w_{1 i},\left(\frac{\mathrm{~d} w_{1}}{\mathrm{~d} r}\right)_{i}\right\}^{\mathrm{T}}=\left[\begin{array}{cc}
1 & 1 \tag{11}\\
1 & 3 / r_{j}
\end{array}\right]\{C\}=\left[A_{1 c}\right]\{C\},
$$

($n=0$):

$$
\left\{\delta_{i}\right\}=\left\{w_{0 i},\left(\frac{\mathrm{~d} w_{0}}{\mathrm{~d} r}\right)_{i}\right\}^{\mathrm{T}}=\left[\begin{array}{cc}
1 & 1 \tag{12}\\
0 & 2 / r_{j}
\end{array}\right]\{C\}=\left[A_{0 c}\right]\{C\},
$$

where $y_{0}=r_{i} / r_{j}$.
Multiplying equations (9)-(12) by their corresponding matrix $\left[A^{-1}\right]$ and substituting into equations (5)-(8), we obtain the displacement functions as functions of the nodal displacements.
(1) Annular plate element:

$$
\begin{gather*}
W_{1 a}=\cos \theta\left[R_{1 a}\right]\left[A_{1 a}^{-1}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\}=\left[N_{1 a}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\}, \tag{13}\\
W_{0 c}=\left[R_{0 a}\right]\left[A_{0 a}^{-1}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\}=\left[N_{0 a}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\} . \tag{14}
\end{gather*}
$$

(2) Circular plate element:

$$
\begin{gather*}
W_{\mathrm{la}}=\cos \theta\left[R_{\mathrm{lc}}\right]\left[A_{1 c}^{-1}\right]\left\{\delta_{i}\right\}=\left[N_{\mathrm{lc}}\right]\left\{\delta_{i}\right\}, \tag{15}\\
W_{0 c}=\left[R_{o c}\right]\left[A_{0 c}^{-1}\right]\left\{\delta_{i}\right\}=\left[N_{0 c}\right]\left\{\delta_{i}\right\} . \tag{16}
\end{gather*}
$$

2.2. STRAIN VECTORS

The strains are related to the displacements through equation (3). Accordingly, by expressing the strain vector in terms of the nodal displacements, we obtain for

Table 1

Non-dimensional natural frequencies of a clamped circular plate; $v=0 \cdot 3, n=0$

m	Present method	Leissa [1]	Irie et al. [31]	Laura et al. [37]
1	$10 \cdot 216$	$10 \cdot 216$	$10 \cdot 216$	$10 \cdot 327$
2	$39 \cdot 771$	$39 \cdot 771$	$39 \cdot 771$	-
3	$89 \cdot 108$	$89 \cdot 104$	$89 \cdot 104$	-
4	$158 \cdot 20$	$158 \cdot 183$	$158 \cdot 184$	-
5	$247 \cdot 08$	$247 \cdot 005$	-	-
6	$355 \cdot 80$	$355 \cdot 568$	-	-
7	$484 \cdot 45$	$483 \cdot 872$	-	-
8	$633 \cdot 22$	$631 \cdot 914$	-	-
9	$802 \cdot 21$	$799 \cdot 702$	-	-
10	$992 \cdot 21$	$987 \cdot 216$	-	-

Table 2
Non-dimensional natural frequencies of a clamped circular plate; $v=0 \cdot 3, n=1$

m	Present method	Leissa [1]	Irie et al. [31]
1	$21 \cdot 261$	$21 \cdot 26$	$21 \cdot 260$
2	$60 \cdot 838$	$60 \cdot 82$	$60 \cdot 829$
3	$120 \cdot 13$	$120 \cdot 08$	$120 \cdot 079$
4	$199 \cdot 23$	$199 \cdot 06$	$199 \cdot 053$
5	$298 \cdot 24$	$297 \cdot 77$	-
6	$417 \cdot 32$	$416 \cdot 20$	-
7	$556 \cdot 66$	$554 \cdot 37$	-
8	$716 \cdot 53$	$712 \cdot 30$	-
9	$897 \cdot 25$	$889 \cdot 95$	-
10	$1099 \cdot 2$	$1087 \cdot 4$	-

the annular and circular plate elements (circumferential modes $n=0$ and $n=1$), the following expressions.
(1) Annular plate element:
$(n=1):$

$$
\begin{align*}
\{\varepsilon\}_{1 a} & =\cos \theta\left[\begin{array}{rrr}
0 & -6 y / r_{j}^{2} & -2 y^{-3} / r_{j}^{2} \\
0 & -2 y / r_{j}^{2} & 2 y^{-3} / r_{j}^{2} / r_{j}^{2} \\
0 & 4 y / r_{j}^{2} & -4 y^{-3} / r_{j}^{2} \\
\hline & +2 y^{-1} / r_{j}^{2}
\end{array}\right]\left[A_{1 a}^{-1}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\} \\
& =\cos \theta\left[Q_{1 a}\right]\left[A_{1 a}^{-1}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\}=\left[B_{1 a}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\}, \tag{17}
\end{align*}
$$

$(n=0):$

$$
\begin{align*}
\{\varepsilon\}_{0 a} & =\left[\begin{array}{cccc}
0 & -2 / r_{j}^{2} & y^{-2} / r_{j}^{2} & -(3+2 \ln y) / r_{j}^{2} \\
0 & -2 / r_{j}^{2} & -y^{-2} / r_{j}^{2} & -(1+2 \ln y) / r_{j}^{2} \\
0 & 0 & 0 & 0
\end{array}\right]\left[A_{0 a}^{-1}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\} \\
& =\left[Q_{0 a}\right]\left[A_{0 a}^{-1}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\}=\left[B_{0 a}\right]\left\{\begin{array}{l}
\delta_{i} \\
\delta_{j}
\end{array}\right\} . \tag{18}
\end{align*}
$$

(2) Circular plate element:
$(n=1)$:

$$
\{\varepsilon\}_{1 c}=\left[\begin{array}{rr}
0 & -6 y / r_{j}^{2} \tag{19}\\
0 & -2 y / r_{j}^{2} \\
0 & 4 y / r_{j}^{2}
\end{array}\right]\left[A_{1 c}^{-1}\right]\left\{\delta_{i}\right\}=\cos \theta\left[Q_{1 c}\right]\left[A_{1 c}^{-1}\right]\left\{\delta_{i}\right\}=\left[B_{1 c}\right]\left\{\delta_{i}\right\}
$$

Table 3
Non-dimensional natural frequencies of a simply-supported circular plate; $v=0 \cdot 3$, $n=0$

		Leissa and Narita		
m	Present method	[32]	Irie et al. [31]	Laura et al. [37]
1	4.935	4.935	4.934	4.947
2	29.720	29.720	29.720	-
3	74.158	74.156	74.156	-
4	138.33	138.32	138.318	-
5	222.27	222.22	-	-
6	326.02	325.85	-	-
7	449.68	449.22	-	-
8	593.40	592.33	-	-
9	757.41	755.18	-	-
10	942.05	937.77	-	-

$(n=0)$:

$$
\{\varepsilon\}_{0 c}=\left[\begin{array}{cc}
0 & -2 / r_{j}^{2} \tag{20}\\
0 & -2 / r_{j}^{j} \\
0 & 0
\end{array}\right]\left[A_{0 c}^{-1}\right]\left\{\delta_{i}\right\}=\left[Q_{0 c}\right]\left[A_{0 c}^{-1}\right]\left\{\delta_{i}\right\}=\left[B_{0 c}\right]\left\{\delta_{i}\right\} .
$$

2.3. MASS MATRICES

Following the framework of the finite element method [30], the mass matrix may be expressed as

$$
\begin{equation*}
[m]=\rho t \int_{0}^{2 \pi} \int_{r_{i}}^{r_{j}}[N]^{\mathrm{T}}[N] r \mathrm{~d} r \mathrm{~d} \theta, \tag{21}
\end{equation*}
$$

Table 4
Non-dimensional natural frequencies of a simplysupported circular plate; $v=0 \cdot 3, n=1$

m	Present method	Leissa and Narita [32]	Irie et al. [31]
1	$13 \cdot 898$	$13 \cdot 898$	$13 \cdot 898$
2	48.484	48.479	48.479
3	$102 \cdot 81$	102.77	102.733
4	176.93	$176 \cdot 80$	176.801
5	$270 \cdot 95$	$270 \cdot 57$	-
6	384.98	384.07	-
7	$519 \cdot 23$	$517 \cdot 31$	-
8	673.93	$670 \cdot 29$	-
9	$849 \cdot 40$	843.01	-
10	$1046 \cdot 0$	$1035 \cdot 47$	-

Table 5
Non-dimensional natural frequencies of a free circular plate; $v=0 \cdot 33, n=0$

m	Present method	Leissa [1]	Itao and Crandall [33]
1	-	-	-
2	9.068	9.084	$9 \cdot 068$
3	38.507	38.55	38.507
4	87.816	87.80	87.813
5	156.90	157.0	156.88
6	245.77	245.9	245.70
7	354.48	354.6	354.25
8	483.12	483.1	482.55
9	631.87	631.0	630.59
10	800.97	798.6	798.37

where ρ is the density of the plate, t its thickness and the matrix $[N]$ is obtained from equations (13) to (16) respectively for different cases. The matrix $[m]$ was obtained analytically by carrying out the necessary matrix operations and integration over r and θ in equation (21).

We give here the results of these analytical calculations (all matrices symmetric).
(1) Annular plate element:
($n=1$):

$$
\begin{equation*}
\left[m_{1 a}\right]=\rho t\left[A_{1 a}^{-1}\right]^{\mathrm{T}}\left[S_{1 a}\right]\left[A_{1 a}^{-1}\right], \tag{22}
\end{equation*}
$$

where the elements of matrix $\left[S_{1 a}\right]$ are given by

$$
\begin{gather*}
S_{1 a}(1,1)=\frac{\pi r_{j}^{2}}{4}\left(1-y_{0}^{4}\right), \quad S_{1 a}(1,2)=\frac{\pi r_{j}^{2}}{6}\left(1-y_{0}^{6}\right), \quad S_{1 a}(1,3)=\frac{\pi r_{j}^{2}}{2}\left(1-y_{0}^{2}\right), \\
S_{1 a}(1,4)=\frac{\pi r_{j}^{2}}{4}\left(-\frac{1}{4}-y_{0}^{4} \ln y_{0}+\frac{y_{0}^{4}}{4}\right), \\
S_{1 a}(2,2)=\frac{\pi r_{j}^{2}}{8}\left(1-y_{0}^{8}\right), \quad S_{1 a}(2,3)=\frac{\pi r_{j}^{2}}{4}\left(1-y_{0}^{4}\right), \\
S_{1 a}(2,4)=\frac{\pi r_{j}^{2}}{6}\left(-\frac{1}{6}-y_{0}^{6} \ln y_{0}+\frac{y_{0}^{4}}{6}\right), \\
S_{1 a}(3,3)=-\pi r_{j}^{2} \ln y_{0}, \quad S_{1 a}(3,4)=\frac{\pi r_{j}^{2}}{2}\left(-\frac{1}{2}-y_{0}^{2} \ln y_{0}+\frac{y_{0}^{4}}{2}\right), \\
S_{1 a}(4,4)=\pi r_{j}^{2}\left[\frac{1}{32}-\frac{y_{0}^{4}}{4}\left(\ln ^{2} y_{0}-\frac{1}{2} \ln y_{0}+\frac{1}{8}\right)\right] ; \tag{23}
\end{gather*}
$$

$(n=0)$:

$$
\begin{equation*}
\left[m_{0 a}\right]=\rho t\left[A_{0 a}^{-1}\right]^{\mathrm{T}}\left[S_{0 a}\right]\left[A_{0 a}^{-1}\right] \tag{24}
\end{equation*}
$$

where the elements of matrix $\left[S_{0 a}\right.$] are given by

$$
\begin{gathered}
S_{0 a}(1,1)=\pi r_{j}^{2}\left(1-y_{0}^{2}\right), \quad S_{0 a}(1,2)=\frac{\pi r_{j}^{2}}{2}\left(1-y_{0}^{4}\right), \\
S_{0 a}(1,3)=2 \pi r_{j}^{2}\left[-\frac{1}{4}-\frac{y_{0}^{2}}{2}\left(\ln y_{0}-\frac{1}{2}\right)\right], \\
S_{0 a}(1,4)=2 \pi r_{j}^{2}\left[-\frac{1}{16}-\frac{y_{0}^{4}}{4}\left(\ln y_{0}-\frac{1}{4}\right)\right], \\
S_{0 a}(2,2)=\frac{\pi r_{j}^{2}}{3}\left(1-y_{0}^{6}\right), \quad S_{0 a}(2,3)=2 \pi r_{j}^{2}\left[-\frac{1}{16}-\frac{y_{0}^{4}}{4}\left(\ln y_{0}-\frac{1}{4}\right)\right], \\
S_{0 a}(2,4)=2 \pi r_{j}^{2}\left[-\frac{1}{36}-\frac{y_{0}^{2}}{6}\left(\ln y_{0}-\frac{1}{6}\right)\right], \\
S_{0 a}(3,3)=2 \pi r_{j}^{2}\left[\frac{y_{0}^{2}}{2}\left(\ln y_{0}-\ln ^{2} y_{0}-\frac{1}{2}\right)+\frac{1}{4}\right], \\
S_{0 a}(3,4)=2 \pi r_{j}^{2}\left[\frac{y_{0}^{4}}{4}\left(\frac{\ln y_{0}}{2}-\ln ^{2} y_{0}-\frac{1}{8}\right)+\frac{1}{32}\right],
\end{gathered}
$$

Table 6
Non-dimensional natural frequencies of a free circular plate $; v=0 \cdot 3, n=1$

m	Present method	Leissa [1]	Itao and Crandall [33]
1	-	-	-
2	$20 \cdot 514$	$20 \cdot 41$	20.513
3	$59 \cdot 868$	59.74	59.859
4	$119 \cdot 06$	118.88	119.01
5	$198 \cdot 10$	$196 \cdot 67$	197.92
6	$297 \cdot 08$	$296 \cdot 46$	296.59
7	$416 \cdot 12$	$414 \cdot 86$	415.01
8	$555 \cdot 43$	$553 \cdot 00$	$553 \cdot 17$
9	$715 \cdot 27$	$710 \cdot 92$	711.07
10	895.94	888.58	888.72

Figure 4. Non-dimensional natural frequency Ω of a circular plate simply-supported along an arbitrary circle $(n=0, m=1): \cdots \cdots$, present method; $-\cdot-\cdot$, Bodine [34].

$$
\begin{equation*}
S_{0 a}(4,4)=2 \pi r_{j}^{2}\left[\frac{y_{0}^{6}}{6}\left(\frac{\ln y_{0}}{3}-\ln ^{2} y_{0}-\frac{1}{18}\right)+\frac{1}{108}\right] \tag{25}
\end{equation*}
$$

(2) Circular plate element:
($n=1$):

$$
\begin{equation*}
\left[m_{1 c}\right]=\rho t\left[A_{1_{c}}^{-1}\right]^{\mathrm{T}}\left[S_{\mathrm{lc}}\right]\left[A_{\mathrm{lc}_{c}^{-1}}^{-1}\right], \tag{26}
\end{equation*}
$$

where the matrix $\left[S_{\mathrm{Ic}}\right.$] is given by

$$
\begin{equation*}
S_{\mathrm{lc}}(1,1)=\frac{\pi r_{j}^{2}}{4}, \quad S_{\mathrm{lc}}(1,2)=\frac{\pi r_{j}^{2}}{6}, \quad S_{\mathrm{lc}}(2,2)=\frac{\pi r_{j}^{2}}{8} \tag{27}
\end{equation*}
$$

($n=0$):

$$
\begin{equation*}
\left[m_{0 c}\right]=\rho t\left[A_{0 c}^{-1}\right]^{\mathrm{T}}\left[S_{0 c}\right]\left[A_{0 c}^{-1}\right], \tag{28}
\end{equation*}
$$

where the matrix $\left[S_{o c}\right.$] is given by

$$
\begin{equation*}
S_{0 c}(1,1)=\pi r_{j}^{2}, \quad S_{0 c}(1,2)=\frac{\pi r_{j}^{2}}{2}, \quad S_{0 c}(2,2)=\frac{\pi r_{j}^{2}}{3} . \tag{29}
\end{equation*}
$$

2.4. STIFFNESS MATRICES

Also, the stiffness matrix may be expressed as [30]

$$
\begin{equation*}
[k]=\int_{0}^{2 \pi} \int_{r_{i}}^{r_{i}}[B]^{\mathrm{T}}[P][B] r \mathrm{~d} r \mathrm{~d} \theta, \tag{30}
\end{equation*}
$$

where $\mathrm{d} s=r \mathrm{~d} r \mathrm{~d} \theta,[P]$ is the elasticity matrix given in relation (3) and the matrix $[B]$ is obtained from equations (17) to (20) respectively for different cases. The matrix $[k]$ was obtained analytically by carrying out the necessary matrix operations and integration over r and θ in equation (30).

The results of these analytical calculations are as follows (all matrices symmetric).
(1) Annular plate element:
($n=1$):

$$
\begin{equation*}
\left[k_{1 a}\right]=\left[A_{1 a}^{-1}\right]^{\mathrm{T}}\left[G_{1 a}\right]\left[A_{1 a}^{-1}\right], \tag{31}
\end{equation*}
$$

where the matrix $\left[G_{1 a}\right]$ is given by

$$
\begin{gather*}
G_{l a}(1, j)=0, \quad \text { for } j=1, \ldots, 4, \\
G_{1 a}(2,2)=\frac{4 \pi K(3+v)}{a^{2}}\left(1-y_{0}^{4}\right), \quad G_{1 a}(2,3)=0, \\
G_{1 a}(2,4)=\frac{2 \pi K(3+v)}{a^{2}}\left(1-y_{0}^{2}\right), \\
G_{1 a}(3,3)=-\frac{4 \pi K(1-v)}{a^{2}}\left(1-y_{0}^{-4}\right), \quad G_{l a}(3,4)=\frac{2 \pi K(1-v)}{a^{2}}\left(1-y_{0}^{-2}\right), \\
G_{1 a}(4,4)=-\frac{4 \pi K}{a^{2}} \ln y_{0} ; \tag{32}
\end{gather*}
$$

Figure 5. Non-dimensional natural frequency Ω of simply-supported circular plate with a discontinuity of thickness $(n=0, m=1, b / a=0 \cdot 5): \cdots$, present method; $-\cdot-\cdot$, Irie and Yamada [35].

Figure 6. Non-dimensional natural frequency Ω of clamped circular plate with a linear variation of thickness $(n=0, m=1) . \cdots \cdots$, present method; $-\cdot-\cdot$, Sato and Shimizu [35].
$(n=0)$:

$$
\begin{equation*}
\left[k_{0 a}\right]=\left[A_{0 a}^{-1}\right]^{\mathrm{T}}\left[G_{0 a}\right]\left[A_{0 a}^{-1}\right], \tag{33}
\end{equation*}
$$

where the matrix [$G_{0 c}$] is given by

$$
\begin{gather*}
G_{0 a}(1, j)=0, \quad \text { for } j=1, \ldots, 4, \\
G_{0 a}(2,2)=\frac{8 \pi K(1+v)}{a^{2}}\left(1-y_{0}^{2}\right), \quad G_{0 a}(2,3)=0, \\
G_{0 a}(2,4)=-\frac{4 \pi K(1+v)}{a^{2}}\left(2 y_{0}^{2} \ln y_{0}+y_{0}^{2}-1\right), \\
G_{0 a}(3,3)=-\frac{2 \pi K(1-v)}{a^{2}}\left(1-y_{0}^{-2}\right), \quad G_{0 a}(3,4)=-\frac{4 \pi K(1-v)}{a^{2}}\left(1-\ln y_{0}\right), \\
G_{0 a}(4,4)=\frac{4 \pi K(1+v)}{a^{2}}\left(y_{0}^{2}-2 y_{0}^{2} \ln y_{0}-2 y_{0}^{2} \ln ^{2} y_{0}-1\right)+\frac{2 \pi K(5+3 v)}{a^{2}}\left(1-y_{0}^{2}\right) . \tag{34}
\end{gather*}
$$

(2) Circular plate element:
$(n=1)$:

$$
\begin{equation*}
\left[k_{1 c}\right]=\left[A_{1 c}^{-1}\right]^{\mathrm{T}}\left[G_{1 c}\right]\left[A_{1 c}^{-1}\right], \tag{35}
\end{equation*}
$$

Figure 7. Non-dimensional natural frequency Ω of simply-supported circular plate with a linear variation of thickness $(n=0, m=1): \cdots \cdots$, present method; ———, Sato and Shimizu [35].
where the matrix $\left[G_{1 \mathrm{lc}}\right.$] is given by

$$
\begin{equation*}
G_{\mathrm{lc}}(1,1)=G_{\mathrm{lc}}(1,2)=0, \quad G_{\mathrm{lc}}(2,2)=\frac{4 \pi K(3+v)}{a^{2}} ; \tag{36}
\end{equation*}
$$

$(n=0):$

$$
\begin{equation*}
\left[k_{o c}\right]=\left[A_{0 c}^{-1}\right]^{\mathrm{T}}\left[G_{0 c}\right]\left[A_{0 c}^{-1}\right], \tag{37}
\end{equation*}
$$

Table 7

Influence of Poisson's ratio v on the non-dimensional natural frequencies of a simply-supported circular plate

n	m	Present method $\Omega(0 \cdot 5) / \Omega(0)^{*}$	Leissa and Narita [32] $\Omega(0 \cdot 5) / \Omega(0)^{*}$
0	1	1.17308	$1 \cdot 17307$
0	2	1.01982	1.01981
0	3	1.00742	1.00743
0	11	1.00520	1.00450
1	1	1.04825	1.04736

[^0]

Figure 8. Non-dimensional natural frequency Ω of circular plate as a function of Poison's ratio $(n=0, m=1):-—$, clamped; $\cdots \cdots$, free; $-\cdot-\cdot$, simply-supported.
where the matrix $\left[G_{0 c}\right.$] is given by

$$
\begin{equation*}
G_{o c}(1,1)=G_{0 c}(1,2)=0, \quad G_{0 c}(2,2)=\frac{8 \pi K(1+v)}{a^{2}} . \tag{38}
\end{equation*}
$$

3. NUMERICAL RESULTS

The complete circular plate is divided into one circular finite element and a few annular finite elements. The position of the nodal points (nodal circle) may be chosen arbitrarily. With the mass and stiffness matrices known of each element, the global mass and stiffness matrices for the whole structure, $[M]$ and $[K]$ respectively, may be constructed by superposition in the usual manner. Each of these square matrices will be of order $2(N+1)$ for the case of an annular plate and of order $2 N$ for the case of a circular plate, where N is the total number of finite elements.

When the plates edges are constrained (such as simply-supported, clamped or free), the appropriate lines and columns in $[M]$ and $[K]$ are deleted to satisfy these constraints. Consequently, matrices $[M]$ and $[K]$ reduce to square matrices of order $2(N+1)-J$, where J is the number of applied constraints. Thus, for a clamped-clamped annular plate, the number of constraints is $J=4$. For a free circular plate, $J=0$.

To ease comparison with previously published results, the natural frequencies calculated in this section are expressed in the non-dimensional form

$$
\Omega=\omega a^{2} \sqrt{\rho t / K}
$$

where ω is the natural angular frequency $(\mathrm{rad} / \mathrm{s}), a$ is the outside radius of the plate, t its thickness, ρ is the material density and K is the bending stiffness [see relation (3)].

3.1. CONVERGENCE OF THE METHOD

A first set of calculations was undertaken to determine the requisite number of finite elements for a precise determination of natural frequencies. Calculations were made for the same uniform clamped circular plate with the number of finite elements N varying from 2 to 20 . The results for the circumferential modes $n=0$ and 1 and the radial modes $m=1,2,9$ and 10 are shown in Figure 3(a). We conclude that the convergence of the system demands six finite elements for the modes $m=1$ and 2 . For radial mode $m=10$, twenty finite elements are sufficient for satisfactory results.

Figure 3(b) shows the non-dimensional natural frequency ($n=1, m=1$) computed by the present method (Hybrid Finite Elements) and compared to NASTRAN code [40] (Classical Finite Elements). In the NASTRAN solution,

Figure 9. Non-dimensional natural frequency Ω of a free-free annular plate: -_, present method; - Leissa [1].

Table 8
Non-dimensional natural frequencies of annular plates for different boundary conditions; $m=1, b / a=0 \cdot 5$

	Boundary conditions	Present method	Vera et al. [38]	Singh and Chakraverty [39]
$n=0$	C-C	$89 \cdot 251$	$89 \cdot 2500$	$89 \cdot 25$
	S-S	40.043	40.0431	$40 \cdot 01$
	C-F	17.714	-	$17 \cdot 60$
	C-S	63.973	63.9732	63.85
$n=1$	C-C	90.230	90.2302	-
	S-S	41.797	41.7973	-
	C-S	65.486	65.4855	-

CQUAD4 finite elements were used to model the circular plate. As may be seen, the hybrid finite element method proves to be more accurate than the classical finite element method and demands only few finite elements to converge.

Moreover, the reader may consult references [16,22] for comparison with available experimental data. In these references, it has been shown, by comparing the numerical results of our approach with the experimental results, that this hybrid finite element method embodies simultaneously the advantages of the finite element method and the precise formulation of classical shell and plate theories.

3.2. FREE VIBRATIONS OF UNIFORM CIRCULAR PLATES

We present here a comparison of the non-dimensional natural frequencies determined by this method with those obtained by other authors, both for different boundary conditions (plate clamped, simply-supported and free) and for different values of the circumferential modes number $n=0$ and $n=1$ and for the radial modes number $m=1$ to 10 .

Table 9

Non-dimensional natural frequencies of clamped-clamped annular plate, $n=0$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	$27 \cdot 281$	$45 \cdot 346$	$89 \cdot 251$	$248 \cdot 43$	$1986 \cdot 5$
2	$75 \cdot 367$	$125 \cdot 36$	$246 \cdot 35$	$685 \cdot 06$	$7055 \cdot 1$
3	$148 \cdot 22$	$246 \cdot 17$	$483 \cdot 25$	$1343 \cdot 3$	12273
4	$245 \cdot 53$	$407 \cdot 31$	$799 \cdot 15$	$2220 \cdot 9$	12907
5	$367 \cdot 31$	$608 \cdot 86$	$1194 \cdot 2$	$3318 \cdot 7$	13427
6	$513 \cdot 64$	$850 \cdot 93$	$1668 \cdot 8$	$4638 \cdot 3$	15778
7	$684 \cdot 63$	$1133 \cdot 7$	$2223 \cdot 1$	$6182 \cdot 6$	17094
8	$880 \cdot 47$	$1457 \cdot 6$	$2857 \cdot 8$	$7946 \cdot 5$	20248
9	$1101 \cdot 4$	$1823 \cdot 0$	$3573 \cdot 9$	$9945 \cdot 5$	23404
10	$1347 \cdot 9$	$2230 \cdot 5$	$4372 \cdot 6$	12179	24516

Table 10
Non-dimensional natural frequencies of clamped-clamped annular plate, $n=1$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	$28 \cdot 916$	$46 \cdot 644$	$90 \cdot 230$	$249 \cdot 16$	$2258 \cdot 2$
2	$78 \cdot 637$	$127 \cdot 38$	$247 \cdot 74$	$686 \cdot 04$	$6235 \cdot 3$
3	$152 \cdot 55$	$248 \cdot 52$	$484 \cdot 81$	$1344 \cdot 3$	11828
4	$250 \cdot 65$	$409 \cdot 86$	$800 \cdot 82$	$222 \cdot \cdot 0$	15690
5	$373 \cdot 04$	$61 \cdot 54$	$1196 \cdot 0$	$3319 \cdot 4$	16653
6	$519 \cdot 86$	$853 \cdot 71$	$1670 \cdot 5$	$4637 \cdot 2$	18713
7	$691 \cdot 64$	$1136 \cdot 6$	$2224 \cdot 9$	$6176 \cdot 6$	19414
8	$887 \cdot 42$	$1460 \cdot 5$	$2859 \cdot 7$	$7939 \cdot 0$	19690
9	$1108 \cdot 7$	$1825 \cdot 9$	$3575 \cdot 9$	$9926 \cdot 1$	20402
10	$1355 \cdot 4$	$2233 \cdot 5$	$4374 \cdot 6$	12140	21280

As may be seen from Tables 1 to 6 , the results obtained by the present method are in good agreement with those of Irie et al. [31], Leissa [1, 32], Itao and Crandall [33] and Laura et al. [37].

3.3. NATURAL FREQUENCIES OF A CIRCULAR PLATE SIMPLY-SUPPORTED ALONG AN ARBITRARY CIRCLE

The non-dimensional natural frequencies of a circular plate which is simply-supported along an arbitrary circle have been obtained by the present method and compared with those obtained by Bodine [34] for the circumferential mode number $n=0$ and radial mode number $m=1$. As may be seen, acceptable agreement has been obtained (Figure 4).

Table 11
Non-dimensional natural frequencies of simply-supported-simply-supported annular plate, $n=0$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	$14 \cdot 485$	$21 \cdot 079$	$40 \cdot 043$	$110 \cdot 08$	$937 \cdot 95$
2	$51 \cdot 782$	$81 \cdot 737$	$158 \cdot 64$	$439 \cdot 21$	$5276 \cdot 6$
3	$112 \cdot 99$	$182 \cdot 54$	$356 \cdot 09$	$987 \cdot 69$	12247
4	$198 \cdot 47$	$323 \cdot 61$	$632 \cdot 53$	$1755 \cdot 6$	12490
5	$308 \cdot 31$	$505 \cdot 02$	$988 \cdot 04$	$2743 \cdot 5$	12840
6	$442 \cdot 59$	$726 \cdot 86$	$1422 \cdot 8$	$3952 \cdot 3$	13980
7	$601 \cdot 42$	$989 \cdot 31$	$1937 \cdot 2$	$5383 \cdot 5$	16989
8	$784 \cdot 97$	$1292 \cdot 6$	$2531 \cdot 6$	$7031 \cdot 4$	19994
9	$993 \cdot 46$	$1637 \cdot 2$	$3207 \cdot 0$	$8912 \cdot 3$	20459
10	$1227 \cdot 3$	$2023 \cdot 6$	$3964 \cdot 3$	11019	22772

Table 12
Non-dimensional natural frequencies of simply-supported-simply-supported annular plate, $n=1$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	$16 \cdot 776$	$23 \cdot 317$	$41 \cdot 797$	$111 \cdot 44$	$995 \cdot 84$
2	$56 \cdot 507$	$84 \cdot 636$	$160 \cdot 57$	$440 \cdot 59$	$3959 \cdot 4$
3	$119 \cdot 33$	$185 \cdot 65$	$358 \cdot 06$	$989 \cdot 00$	$8726 \cdot 3$
4	$205 \cdot 84$	$326 \cdot 81$	$634 \cdot 51$	$1756 \cdot 8$	15426
5	$316 \cdot 35$	$508 \cdot 27$	$990 \cdot 03$	$2744 \cdot 2$	15860
6	$451 \cdot 10$	$730 \cdot 14$	$1424 \cdot 8$	$3951 \cdot 9$	16978
7	$610 \cdot 26$	$992 \cdot 61$	$1939 \cdot 2$	$5380 \cdot 6$	19150
8	$794 \cdot 05$	$1295 \cdot 9$	$2533 \cdot 7$	$7031 \cdot 5$	19635
9	$1002 \cdot 7$	$1640 \cdot 5$	$3209 \cdot 0$	$8906 \cdot 3$	20004
10	$1236 \cdot 7$	$2026 \cdot 9$	$3966 \cdot 3$	11007	20969

3.4. NATURAL FREQUENCIES OF NON-UNIFORM CIRCULAR PLATES

Two types of non-uniform circular plate have been studied. The first is a clamped circular plate with a discontinuity of thickness and the second is a plate with a linear variation of thickness in the radial direction.

3.4.1. Circular plate with thickness discontinuity

The plate is of uniform thickness h_{0} as far as radius b and of thickness h_{1} from radius b to exterior radius a (Figure 5).

The natural frequencies of this type of circular plate have been established by Irie and Yamada [35] for the circumferential mode $n=0$ and radial mode $m=1$, with a h_{0} / h_{1} thickness ratio varying from $0 \cdot 5$ to 2 . The results obtained by our method are in good agreement with those obtained by Irie and Yamada [35] (Figure 5).

TAbLE 13

Non-dimensional natural frequencies of clamped-free annular plate, $n=0$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	$10 \cdot 159$	$11 \cdot 424$	$17 \cdot 714$	$43 \cdot 143$	$347 \cdot 55$
2	$39 \cdot 521$	$51 \cdot 745$	$93 \cdot 847$	$251 \cdot 67$	$1840 \cdot 8$
3	$90 \cdot 447$	$132 \cdot 41$	$252 \cdot 20$	$692 \cdot 09$	$6310 \cdot 8$
4	$164 \cdot 32$	$253 \cdot 14$	$488 \cdot 97$	$1350 \cdot 1$	12271
5	$262 \cdot 03$	$414 \cdot 24$	$804 \cdot 85$	$2227 \cdot 7$	12900
6	$383 \cdot 96$	$615 \cdot 75$	$1199 \cdot 9$	$3325 \cdot 6$	13040
7	$530 \cdot 32$	$857 \cdot 80$	$1674 \cdot 4$	$4645 \cdot 2$	14114
8	$701 \cdot 31$	$1140 \cdot 6$	$2228 \cdot 7$	$6189 \cdot 6$	17094
9	$897 \cdot 12$	$1464 \cdot 4$	$2863 \cdot 4$	$6703 \cdot 8$	19087
10	$1118 \cdot 1$	$1829 \cdot 7$	$3579 \cdot 4$	$7953 \cdot 5$	20070

Table 14

Non-dimensional natural frequencies of clamped-free annular plate, $n=1$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	$21 \cdot 195$	$19 \cdot 540$	$22 \cdot 015$	$45 \cdot 333$	$355 \cdot 19$
2	$60 \cdot 062$	$59 \cdot 760$	$97 \cdot 376$	$253 \cdot 72$	$2229 \cdot 1$
3	$117 \cdot 09$	$138 \cdot 66$	$255 \cdot 06$	$693 \cdot 79$	$6282 \cdot 4$
4	$192 \cdot 62$	$258 \cdot 51$	$491 \cdot 58$	$1351 \cdot 6$	11969
5	$288 \cdot 93$	$419 \cdot 12$	807.33	$2229 \cdot 1$	15690
6	$408 \cdot 52$	$620 \cdot 33$	$1202 \cdot 3$	$3326 \cdot 4$	16670
7	$552 \cdot 68$	$862 \cdot 18$	$1676 \cdot 7$	$4644 \cdot 2$	18351
8	$721 \cdot 87$	$1144 \cdot 8$	$2231 \cdot 0$	$6183 \cdot 5$	18777
9	$916 \cdot 30$	$1468 \cdot 5$	$2865 \cdot 7$	$6439 \cdot 8$	19453
10	$1136 \cdot 2$	$1833 \cdot 8$	$3581 \cdot 7$	$7945 \cdot 7$	19704

Using the present method, it is possible to determine the natural frequencies for this type of plate for different thickness ratio h_{0} / h_{1}, and particularly for high radial modes.

3.4.2. Circular plate with a linear thickness variation

The non-dimensional natural frequencies are determined for the circumferential mode $n=0$ and radial mode $m=1$ for different values of $\alpha=\left(h_{e}-h_{c}\right) / h_{c}$ (Figures 6 and 7), where h_{c} is the thickness at the centre of the plate and h_{e} is the thickness at the outside edge of the plate.

The calculations have been carried out for two types of boundary conditions: a clamped plate (Figure 6) and a simply-supported plate (Figure 7). The results obtained are compared with those obtained by Sato and Shimizu [36] who used the transfer matrix method. Good agreement has been obtained.

Table 15
Non-dimensional natural frequencies of clamped-simply-supported annular plate, $n=0$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	$22 \cdot 701$	$33 \cdot 765$	$63 \cdot 973$	$174 \cdot 42$	$1391 \cdot 9$
2	$65 \cdot 640$	$104 \cdot 22$	$202 \cdot 07$	$558 \cdot 19$	$5986 \cdot 6$
3	$132 \cdot 90$	$215 \cdot 08$	$419 \cdot 24$	$1161 \cdot 4$	12270
4	$224 \cdot 46$	$366 \cdot 22$	$715 \cdot 42$	$1984 \cdot 2$	12780
5	$340 \cdot 39$	$557 \cdot 72$	$1090 \cdot 7$	$3026 \cdot 6$	12917
6	$480 \cdot 79$	$789 \cdot 69$	$1545 \cdot 4$	$4290 \cdot 4$	14080
7	$645 \cdot 78$	$1062 \cdot 3$	$2079 \cdot 7$	$5779 \cdot 3$	17094
8	$835 \cdot 54$	$1375 \cdot 9$	$2694 \cdot 3$	$7488 \cdot 5$	20055
9	$1050 \cdot 3$	$1730 \cdot 9$	$3390 \cdot 0$	$9425 \cdot 4$	22351
10	$1290 \cdot 5$	$2127 \cdot 8$	$4167 \cdot 8$	11603	23603

Table 16
Non-dimensional natural frequencies of clamped-simply-supported annular plate, $n=1$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	$25 \cdot 283$	$35 \cdot 906$	$65 \cdot 486$	$175 \cdot 52$	$1557 \cdot 6$
2	$70 \cdot 690$	$107 \cdot 03$	$203 \cdot 85$	$559 \cdot 37$	$5040 \cdot 6$
3	$139 \cdot 43$	$218 \cdot 11$	$421 \cdot 11$	$1162 \cdot 7$	10211
4	$231 \cdot 93$	$369 \cdot 35$	$717 \cdot 33$	$1985 \cdot 4$	15689
5	$348 \cdot 50$	$560 \cdot 91$	$1092 \cdot 7$	$3027 \cdot 8$	16432
6	$489 \cdot 33$	$792 \cdot 92$	$1547 \cdot 3$	$4290 \cdot 5$	17937
7	$654 \cdot 64$	$1065 \cdot 6$	$2081 \cdot 6$	$5774 \cdot 4$	19211
8	$844 \cdot 64$	$1379 \cdot 2$	$2696 \cdot 3$	$7480 \cdot 7$	19646
9	$1059 \cdot 6$	$1734 \cdot 2$	$3392 \cdot 0$	$9411 \cdot 4$	20105
10	$1300 \cdot 0$	$2131 \cdot 2$	$4170 \cdot 0$	11569	21049

We note that frequencies vary linearly with α for both boundary conditions. The equations for these straight lines are as follows.

Clamped plate: $\quad \Omega=8 \cdot 6 \alpha+10 \cdot 2, \quad$ for $n=0, m=1$.
Simply-supported: $\quad \Omega=3 \alpha+4 \cdot 9, \quad$ for $n=0, m=1$.
This method can also give the natural frequencies for a circular plate of other non-uniform thickness and properties, whether the modes are high or low.

3.5. INFLUENCE OF POISSON'S RATIO ON THE NATURAL FREQUENCIES OF CIRCULAR PLATES

Analysis of the results of Table 7 shows that the effect of Poisson's ratio on the natural frequencies of circular plates is only important for low radial vibration modes. This effect is evident in Figure 8, which shows the natural frequencies of

Table 17
Non-dimensional natural frequencies of free-free annular plate, $n=0$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	-	-	-	-	-
2	$8 \cdot 7745$	$8 \cdot 3535$	$9 \cdot 3135$	$13 \cdot 162$	$38 \cdot 014$
3	$38 \cdot 236$	$50 \cdot 353$	$92 \cdot 308$	$250 \cdot 57$	$1233 \cdot 4$
4	$89 \cdot 028$	$130 \cdot 48$	$249 \cdot 39$	$687 \cdot 09$	$1847 \cdot 5$
5	$162 \cdot 86$	$251 \cdot 20$	$486 \cdot 23$	$1345 \cdot 2$	$5954 \cdot 6$
6	$260 \cdot 54$	$412 \cdot 28$	$802 \cdot 09$	$1390 \cdot 3$	12267
7	$382 \cdot 45$	$613 \cdot 78$	$1197 \cdot 1$	$2222 \cdot 5$	12937
8	$528 \cdot 80$	$855 \cdot 81$	$1612 \cdot 2$	$3320 \cdot 0$	13001
9	$699 \cdot 76$	$1138 \cdot 6$	$1671 \cdot 6$	$4639 \cdot 0$	14058
10	$895 \cdot 54$	$1462 \cdot 3$	$2225 \cdot 9$	$6182 \cdot 2$	17016

Table 18
Non-dimensional natural frequencies of free-free annular plate, $n=1$

		b / a			
m	$0 \cdot 1$	$0 \cdot 3$	$0 \cdot 5$	$0 \cdot 7$	$0 \cdot 9$
1	-	-	-	-	-
2	$20 \cdot 406$	$18 \cdot 292$	$17 \cdot 198$	$21 \cdot 914$	$55 \cdot 250$
3	$59 \cdot 072$	$58 \cdot 784$	$96 \cdot 266$	$253 \cdot 13$	$1365 \cdot 8$
4	$116 \cdot 01$	$137 \cdot 11$	$252 \cdot 61$	$689 \cdot 31$	$2249 \cdot 1$
5	$191 \cdot 46$	$256 \cdot 83$	$489 \cdot 09$	$1347 \cdot 2$	$6293 \cdot 7$
6	$287 \cdot 71$	$417 \cdot 36$	$804 \cdot 77$	$1542 \cdot 4$	12056
7	$407 \cdot 23$	$618 \cdot 52$	$1199 \cdot 7$	$2224 \cdot 7$	15703
8	$551 \cdot 33$	$860 \cdot 33$	$1674 \cdot 1$	$3322 \cdot 0$	16808
9	$720 \cdot 47$	$1142 \cdot 9$	$1796 \cdot 7$	$4639 \cdot 7$	18744
10	$914 \cdot 84$	$1466 \cdot 6$	$2228 \cdot 3$	$6179 \cdot 1$	19456

a circular plate for the circumferential mode number $n=0$ and the first radial mode. We conclude that the effect is more pronounced for a simply-supported circular plate (17% difference between the frequency calculated with $v=0$ and that calculates with $v=0 \cdot 5$); for a free plate the error is 16%, while for a clamped plate Poisson's ratio has no effect. For a simply-supported annular plate the effect of the ratio is not very pronounced (3%), while it is negligible for other boundary conditions.

3.6. Free vibrations of annular plates

Figure 9 shows a comparison of results between the present method and those of Leissa [1] for a free-free annular plate. For other boundary conditions, Table 8 shows comparative results between the present method and those of Vera et al. [38] and Singh and Chakraverty [39]. As may be seen, very good agreement was found between the two results. The present method is remarkable for the fact that it enables us to determine with equal precision both low and high natural frequencies. The results obtained in the literature for annular plates are only for relatively low radial modes ($m=1,2,3$). To extend the range of results, Tables 9-18 show part of the results obtained for $n=0,1$ and $m=1$ to 10 for different boundary conditions and various dimensions of the annular plate. The annular plate was modelled with twenty finite elements.

4. CONCLUSIONS

A method based on the classical solution shape functions of plate theory and the finite element method has been formulated for the transverse vibration analysis of non-uniform circular and annular plates. The circumferential modes numbers ($n=0$) and $(n=1)$ have been studied in this paper. Two new finite elements were developed, the first type being a circular plate and the second an annular plate. Mass and stiffness matrices were determined by analytical integration. The convergence of the proposed method was established and the natural frequencies
were obtained for different circular and annular plates, both uniform and non-uniform. These were compared with the results of other investigations and generally good agreement was obtained.

This method offers many advantages, some of which are the following.
(1) Simple inclusion of thickness discontinuities, material property variations, differences in materials comprising the plate.
(2) Arbitrary boundary conditions: the problem can be resolved for a supported, clamped-free or clamped-clamped plate without changing the displacement functions in each case.
(3) High as well as low frequencies may be obtained with high accuracy as shown in the present study and in references [16, 20, 22, 26, 28].
(4) As shown in reference [16], this method is more precise than the usual finite element methods, but suffers from a lack of versatility; for instance, it cannot be used to analyse other than geometrically axially symmetric, non-uniform circular and annular plates and cylindrical and conical shells.
(5) This approach has been also applied with satisfactory results to the dynamic linear and non-linear analysis of cylindrical and conical shells containing a flowing fluid or partially filled with liquid [14-28].

REFERENCES

1. A. W. Leissa 1969 NASA SP-160. Vibration of plates.
2. A. W. Leissa 1977 The Shock and Vibration Digest 9(10), 13-24. Recent research in plate vibrations. Part 1: Classical theory.
3. A. W. Leissa 1978 The Shock and Vibration Digest 10(12), 21-35. Recent research in plate vibrations, 1973-1976. Part 2: Complicating effects.
4. A. W. Leissa 1981 The Shock and Vibration Digest 13(9), 11-22. Recent research in plate vibrations, 1976-1980. Part 1: Classical theory.
5. A. W. Leissa 1981 The Shock and Vibration Digest 13(10), 19-36. Recent research in plate vibrations, 1976-1980. Part 2: Complicating effects.
6. A. W. Leissa 1987 The Shock and Vibration Digest 19(2), 11-18. Recent research in plate vibrations, 1981-1985. Part 1: Classical theory.
7. A. W. Leissa 1987 The Shock and Vibration Digest 19(3), 10-24. Recent research in plate vibrations, 1981-1985. Part 2: Complicating effects.
8. D. R. Avalos, P. A. A. Laura and A. M. Bianchi 1987 Journal of Acoustical Society of America 82, 13-16. Analytical and experimental investigation on vibrating circular plates with stepped thickness over a concentric circular region.
9. B. Singh and S. Chakraverty 1992 Journal of Sound and Vibration 152, 149-155. Transverse vibration of simply supported elliptical and circular plates using boundary characteristics orthogonal polynomials in two variables.
10. J. S. Yang 1993 Journal of Sound and Vibration 165, 178-185. The vibration of circular plate with varying thickness.
11. B. Singh and V. Saxena 1995 Journal of Sound and Vibration 179, 879-899. Axisymmetric vibration of a circular plate with double linear variable thickness.
12. R. Szelard 1974 Theory and Analysis of Plates. Englewood Cliffs, NJ: Prentice-Hall.
13. H. D. Lloyd 1976 Beams, Plates and Shells. New York: McGraw-Hill.
14. A. A. Lakis and M. P. Paidoussis 1972 Journal of Mech. Eng. Science 14(1), 49-71. Dynamic analysis of axially non-uniform thin cylindrical shells.
15. A. A. Lakis and M. P. Paidoussis 1971 Journal of Sound and Vibration 19, 1-15. Free vibration of cylindrical shells partially filled with liquid.
16. A. A. Lakis and M. P. Paidoussis 1972 Journal of Sound and Vibration 25, 1-27. Prediction of the response of a cylindrical shell to arbitrary of boundary-layer-induced random pressure field.
17. A. A. Lakis 1976 2nd International Symposium on Finite Element Methods in Flow Problems, Santa Margherita, Ligure, Italy. Theoretical model of cylindrical structures containing turbulent flowing fluids.
18. A. A. Lakis and R. Dore 1978 International Journal of Solids and Structures 14(6), 499-516. General method for analysing contact stresses on cylindrical vessels.
19. A. A. Lakis and A. Laveau 1991 International Journal of Solids and Structures 28(9), 1079-1094. Non-linear dynamic analysis of anisotropic cylindrical shells containing a flowing fluid.
20. A. A. Lakis and M. Sinno 1992 International Journal for Numerical Methods in Engineering 33, 235-268. Free vibration of axisymmetric and beam-like cylindrical shells partially filled with liquid.
21. A. A. Lakis, A. Selmane and A. Toledano 1996 ASME Pressure Vessels and Piping Conference, Montreal, Canada 326, 145-150. Non-linear dynamic analysis of anisotropic cylindrical shells.
22. A. Selmane and A. A. Lakis 1997 International Journal of Computers and Structures 62(1), 1-12. Dynamic analysis of anisotropic open cylindrical shells.
23. A. Selmane and A. A. Lakis 1997 International Journal for Numerical Methods in Engineering 40, 1115-1137. Influence of geometric non-linearities on the free vibrations of orthotropic open cylindrical shells.
24. A. Selmane and A. A. Lakis 1997 Journal of Fluids and Structures 11, 111-134. Vibration analysis of anisotropic open cylindrical shells subjected to a flowing fluid.
25. A. Selmane and A. A. Lakis 1997 Journal of Sound and Vibration 202(1), 67-93. Non-linear dynamic analysis of orthotropic open cylindrical shells subjected to a flowing fluid.
26. A. A. Lakis, P. van Dyke and H. Ouriche 1992 Journal of Fluids and Structures 6, 135-162. Dynamic analysis of anisotropic fluid-filled conical shells.
27. A. A. Lakis, N. Tuy, A. Laveau and A. Selmane 1989 International Symposium, STRUCOPT-COMPUMAT, Paris, France. Analysis of axially non-uniform thin spherical shells; pp. 80-85.
28. A. A. Lakis and A. Selmane 1997 International Journal for Numerical Methods in Engineering 40, 969-990. Classical solution shape functions in the finite element analysis of circular and annular plates.
29. J. L. Sanders 1959 NASA TR-24 An improved first approximation theory for thin shells.
30. O. C. Zienkiewicz 1977 The Finite Element Method, 3th edn. New York: McGraw-Hill.
31. T. Irie, G. Yamada and S. Aomura 1980 Journal of Applied Mechanics 47, 652-655. Natural frequencies of mindlin circular plates.
32. A. W. Leissa and Y. Narita 1980 Journal of Sound and Vibration 70, 221-229. Natural frequencies of simply supported circular plates.
33. K. Itao and S. H. Crandall 1979 Journal of Applied Mechanics 46, 448-453. Natural mode and natural frequencies of uniform, circular, free-edge plates.
34. R. Y. Bodine 1959 Journal of Applied Mechanics 666-668. The fundamental frequency of thin, flat, circular plate simply supported along a circle of arbitrary radius.
35. T. Irie and G. Yamada 1980 Bulletin of the JSME 23(176), 286-292. Analysis of free vibration of annular plate of variable thickness by use a spline technique method.
36. N. Sato and C. Shimizu 1984 Journal of Sound and Vibration 97, 587-595. Transfer matrix analysis of non-linear free vibrations of circular plates with variable thickness.
37. P. A. A. Laura, J. C. Paloto and R. D. Santos 1975 Journal of Sound and Vibration 41(2), 177-180. A note on the vibration and stability of a circular plate elastically restrained against rotation.
38. S. A. Vera, M. D. Sánchez, P. A. A. Laura and D. A. Vera 1998 Journal of Sound and Vibration 231(4), 757-762. Transverse vibrations of circular, annular plates with several combinations of boundary conditions.
39. B. Singh and S. Chakraverty 1993 Journal of Sound and Vibration 162(3), 537-546. Transverse vibration of annular circular and elliptic plates using the characteristic orthogonal polynomials in two dimensions.
40. M. Reymond and M. Miller 1996 MSC/NAStran Reference Guide. The MacNeal-Schwendler Corporation.

APPENDIX: NOMENCLATURE

$a=$ outside radius of an annular or circular plate
$b=$ inside radius of an annular plate
$E=$ Young's modulus
$J=$ number of boundary conditions
$K=$ bending stiffness $=E t^{3} / 12\left(1-v^{2}\right)$
$\ln =$ Napierian logarithm
$m=$ radial mode number
$n=$ circumferential mode number
$r=$ radial coordinate
$r_{i}=$ inside radius of annular finite element
$r_{j}=$ outside radius of annular or circular finite element
$t=$ thickness of the plate
$W=$ transversal displacement
$w_{n}=$ amplitude of W associated with the nth circumferential mode number
$y=$ coordinate defined by $y=r / r_{j}$
$y_{0}=$ coordinate defined by $y_{0}=r_{i} / r_{j}$
$\theta=$ circumferential coordinate
$v=$ Poisson's ratio
$\rho=$ density of the material of the plate
$\omega=$ natural angular frequency
$\Omega=$ non-dimensional natural frequency $=\omega a^{2}(\rho t / K)^{1 / 2}$
$[A]=$ defined by equations (9)-(12)
$[k]=$ stiffness matrix
$[\mathrm{m}]=$ mass matrix
$[P]=$ elasticity matrix, given in equation (3)
$\{C\}=$ arbitrary constants vector
$\{\varepsilon\}=$ deformation vector
$\{\sigma\}=$ stress vector.

[^0]: * $\Omega(0 \cdot 5)$, non-dimensional natural frequency calculated for $v=0 \cdot 5 ; \Omega(0)$, non-dimensional natural frequency calculated for $v=0$.

